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Motivation

• Spacecraft to Mars typically enter the atmosphere at 5-7 km/s
• Mars Atmosphere is 96% CO2, 1.9% N2, 1.9% Ar
• Radiative and Convective Heating Depend Upon Reactions in 

Shock Layer
• Most rates in use based upon old (60s-70s) shock tube studies
• Recent updates (i.e. Johnston 2014) based on data in mixture
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Simplified Chemistries

• Extensive validation work has been performed on full 
chemistry set

• Model revisions* have also been based on measurements 
of full chemistry

• Studies of simplified chemistry sets may result in better 
informed modeling choices
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* Johnston, C. O., and Brandis, A. M., "Modeling of nonequilibrium CO Fourth-Positive and CN Violet emission in CO2–N2 
gases," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 149, 2014, pp. 303-317



Simplified Chemistries

• Substituting CO for CO2 minimizes the influence of CO2
reactivity on results
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Electric Arc Shock Tube (EAST)

• Experiments Conducted in EAST Facility to study shock-heated CO

• 4” Aluminum Tube, 7.9 m from primary diaphragm to test section

• Initial condition of 0.1 and 0.25 Torr CO, shock velocities from 3-9 km/s

• Diagnostics
- Tunable Diode Laser Spectroscopy (Mid-Wave Infrared)
- Imaging Emission Spectroscopy (4 spectrometers covering VUV through mid-Infrared) 6



Analysis of CO Data

• TDLAS data*:
- Measures one molecular line vs. time
- Obtain translational temperature, CO number density

• Emission spectroscopy
- Measure radiance versus position and wavelength over broad spectral range:
 VUV (145-195nm, CO A-X transition), UV (190-330 nm), Visible (480-890 nm, C2 Swan Bands), 

mid-Infrared (4000-5500 nm, CO vibrational)
- Radiant Power depends on temperature, (excited) species number densities
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Equilibrium CO Shocks

• Temperatures from 4000-8000K
• Major species CO, C and O
• C2 at 10-200 ppm, starting at 3.5 km/s
• C+ ion at 100 ppm at 4 km/s, 0.1% at 6 km/s, 1% at 10 km/s
• CO2, CO+, O+ and O2 are more minor species
• Mole fractions, temperatures not strong function of pressure from 0.1-0.25 Torr
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Primary Reaction Set

• CO Dissociation
CO + M → C + O + M

• CO Exchange
CO + O → C + O2

CO + C → C2 + O
• O2/C2 Dissociation

O2 + M → O + O + M
C2 + M → C + C + M

• Ionization kicks in at higher velocity
• 5 sp, 5 rxn
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Space of Valid Solutions

• 1D Shock must satisfy conservation equations:
Atom conservation: 𝑛𝑛𝐶𝐶𝐶𝐶 + 𝑛𝑛𝐶𝐶 + 2𝑛𝑛𝐶𝐶2 = 𝜌𝜌0𝑣𝑣0

𝑀𝑀𝐶𝐶𝐶𝐶𝑣𝑣

Stoichiometry: 𝑛𝑛𝐶𝐶 + 2𝑛𝑛𝐶𝐶2 = 𝑛𝑛𝐶𝐶 + 2𝑛𝑛𝐶𝐶2
(Atom + Stoichiometry conservation enforces Conservation of Mass)
Momentum: ∑𝑛𝑛𝑖𝑖 𝑅𝑅𝑅𝑅 + 𝑀𝑀𝑖𝑖𝑣𝑣2 = 𝑝𝑝0 + 𝜌𝜌0𝑣𝑣02

Energy: ∑𝑛𝑛𝑖𝑖 ℎ𝑖𝑖 𝑅𝑅 + 𝑀𝑀𝑖𝑖
1
2𝑣𝑣

2 − ℎ0 − 1
2𝑣𝑣0

2 = 0

• 4 equations, 7 unknowns (v, T, 5 ni’s) – 3 DOF
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CO Reaction Rates

• Reaction Rate may be inferred from T vs. x:

• ω = f(T) 
• 𝑑𝑑𝜔𝜔𝐶𝐶𝐶𝐶

𝑑𝑑𝑑𝑑
= 𝑀𝑀𝐶𝐶𝐶𝐶𝑟𝑟𝐶𝐶𝐶𝐶

𝜌𝜌0𝑣𝑣0

• 𝑟𝑟𝐶𝐶𝐶𝐶
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CO Dissociation Rate

• Reaction rate measured over many tests cluster around the rate curve 
reported by Hanson
- Note that reaction at high Temperature is faster than the time scale of TDLAS : fit is 

less reliable/more scattered
- Rate has large Arrhenius (T-5.5) coefficient : suggests compound mechanism
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Compound Mechanism for CO dissociation

• Compound mechanism involves excitation to an excited state that then 
dissociates
- At high temperature, excitation is rate limiting step, excited state is populated below equilibrium
- At low temperature, dissociation is rate limiting, excited state is equilibrated

• What is the excited state?
- Some literature has suggested M not inert and could be intermediate such as CO2, C2, O2
- An obvious choice may be the CO metastable, CO(a)

𝐶𝐶𝐶𝐶 𝑋𝑋 + 𝑀𝑀 ↔ 𝐶𝐶𝐶𝐶∗ + 𝑀𝑀
𝐶𝐶𝐶𝐶∗ + 𝑀𝑀 → 𝐶𝐶 + 𝐶𝐶 + 𝑀𝑀

𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 =
𝑘𝑘𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑘𝑘𝑒𝑒𝑑𝑑𝑒𝑒

𝑘𝑘𝑑𝑑𝑒𝑒−𝑒𝑒𝑑𝑑𝑒𝑒 + 𝑘𝑘𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑

=
𝑘𝑘𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑘𝑘𝑒𝑒𝑑𝑑𝑒𝑒

𝑛𝑛𝐶𝐶𝐶𝐶∗
𝑛𝑛𝐶𝐶𝐶𝐶(𝑋𝑋) 𝑒𝑒𝑒𝑒

𝑘𝑘𝑒𝑒𝑑𝑑𝑒𝑒 + 𝑘𝑘𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑
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• Evaluation of rate using a, a’, A, d, e states of CO all can plausibly explain data

• Dissociation rates derived from a, a’ are within an order of magnitude of 
estimates from Park

• De-excitation rates are somewhat lower than rates measured at 300K
• Likely a combination of the above

Intermediate States
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Temperature Predictions 3-6 km/s

• At 3.4 km/s – No dissociation, 
trend driven by T-Tv relaxation

• At 4.4 km/s and 5.7 km/s
- Schwenke and Johnston Rate too 

slow
- Hanson rate matches data
- Tv trend looks ok
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Temperature Predictions 6-9 km/s

• Schwenke Rate too slow
• At 6.6-7.5 km/s

- Johnston and Hanson rates similarly 
match data

• At 8.6 km/s
- Data relaxes faster than any rate 

predicts
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C2 Rates

• There are two rates that matter for C2 radiation : Dissociation 
and Exchange

• There is about 1 OOM difference between Park and literature 
for dissociation rate

• Up to 2 OOM difference between Park and literature for 
exchange rate
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C2 Rate Sensitivity

• Radiation shows significant sensitivity to exchange
- Park’s exchange puts peak at wrong location, makes it wider

• Result is less sensitive to dissociation rate
- Discrepancy at the peak may be due to Boltzmann model
- If not, rate would need to be even faster

• Fairbarn’s rates appear more consistent with data
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C2 Radiance Predictions

• Except for peak, agreement is very good
• C2 reaction rates from Fairbarn agree better than those of Park 
• Further improvement would be construction of a non-Boltzmann model
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C2 Radiance – 4-7 km/s

• 4.4 and 5.7 km/s
- Schwenke overpredicts (T too high)
- Hanson+Fairbarn overpredicts peak, 

good elsewhere
- Johnston (Park) gets trend wrong

• 6.6 km/s
- Similar observations, Johnston 

showing better agreement
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C2 Radiance – 7-9 km/s

• Johnston agrees well with 
data at these velocities
- Boltzmann model for C2

• Hanson/Fairbarn relaxation 
trend is no longer matched 
at 8.6 and 9.5 km/s
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CO VUV Radiance – 4-7 km/s

• 4.4 and 5.7 km/s
- Schwenke overpredicts (T too 

high)
- Hanson+Fairbarn matches data
- Johnston over/under

• 6.6 km/s
- Hanson and Johnston same 

result
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CO VUV Radiance – 7-9 km/s

• Johnston agrees well with 
data at these velocities

• Hanson overprediction
becomes worse as velocity 
increases
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VUV Spectral Comparison (5.7 km/s)

• VUV Prediction does not simultaneously match low and high 
wavelength region



Fitting of CO VUV Bands

• Fits of the VUV spectrum:
- Requires 3 Temperatures in Non-

equilibrium
- Result in elevated CO density 

(compared to what conservation 
allows)
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CO MWIR Radiance – 3-6 km/s

• CO IR radiance not very 
sensitive to reaction rates 
in this velocity regime

• Always underpredicted
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CO MWIR Radiance – 6-9 km/s

• Slower reaction rates 
predict overshoots that are 
not observed in experiment

• Still underpredicted
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IR Underprediction

• Underprediction nearly 
constant with wavelength

• Correction required would 
be ~1.3x
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Absorbance is Overpredicted

• Absorbance overpredicted
by ~25%
- Opposite to trend in Emission, 

cannot be error in linestrength
or CO number density

• At 8.6 km/s, temperature 
prediction does not match
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CO MWIR Predictions

• Different linelists have been tested in NEQAIR and all produce substantially the 
same result

• Alberti, et al. (2017) showed that HITRAN underpredicts experimental data above 
~1200K at pressures up to 3 bar
- Consistent with emission trend

• To underpredict the band but overpredict a line indicates there are additional 
contributors to the band
- Additional excited states of CO not accounted for?
- May have implications for CO partition function and thermodynamics
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Conclusions

• Analysis of Temperature Relaxation Finds CO 
dissociation rate in agreement with that of Hanson
- It is suggested this is a compound reaction that proceeds through 

CO metastable levels
- Excited states must be considered in QCT calculations!
 CO Metastable is at about half of the dissociation energy

• Emission trends are consistent with CO rate of Hanson 
below ~7 km/s, and Johnston above 7 km/s

• C2 Emission more consistent with rates of Fairbarn than 
Park
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Open Questions

• Deviation of Data at High Velocity
- Role of electron impact dissociation of CO?
- Need for merged Johnston/Hanson reaction rate?

• Overprediction of C2 Swan band at shock front
- Non-Boltzmann modeling of C2

• Inconsistencies in CO radiance
- Absorption and emission disagree with predictions in opposite 

direction
 HITRAN database shown not to match high temperature CO data
 Possible errors in CO Partition function and energy levels?

- Predicted shape of CO 4th Positive radiation
 Dipole moments and potential energy surfaces for CO
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Rate Extracted – Assuming exchange

• Rates fail to collapse – not correlated with O or C atom 
fraction

• Rates inconsistent with predicted rates
• Suggests exchange does not drive dissociation
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